Skip to content

Equality Constraints

KKT Conditions

Find the minimum (over x, y) of the function f(x,y), subject to g(x,y)=0, where

minimize: 2x2+3y2subject to: x2+y2=4

1. Step I

Defining variable and functions

$\displaystyle f = 2 x^{2} + 3 y^{2}\ g = x^{2} + y^{2} - 4 $

2. Step II

Defining lagrangian function.

The lagrangian L=λ(x2+y24)+2x2+3y2

3. Step III

Deriving KKT equations

2λx+4x=02λy+6y=0x2+y24=0

4. Step IV

Solving KKT Conditions to obtain necessary points

x y λ Obj
2 0 2 8
2 0 2 8
0 2 3 12
0 2 3 12

5. Step V

Computing Bordered Hessian for each points

H¯=[02x2y2x2λ+402y02λ+6]

6. Step VI

Determinant of the bordered hessian will provide maxima and minima.

x y λ Obj Bordered
Hessian
2 0 2 8 32
2 0 2 8 32
0 2 3 12 32
0 2 3 12 32

Conclusion: First two points are minima while third and forth points are maxima.

Last modified on: 2023-01-06 22:22:45