Equality Constraints
KKT Conditions¶
Find the minimum (over \(x\), \(y\)) of the function \(f(x,y)\), subject to \(g(x,y)=0\), where
1. Step I¶
Defining variable and functions
$\displaystyle f = 2 x^{2} + 3 y^{2}\ g = x^{2} + y^{2} - 4 $
2. Step II¶
Defining lagrangian function.
The lagrangian \(L=- \lambda \left(x^{2} + y^{2} - 4\right) + 2 x^{2} + 3 y^{2}\)
3. Step III¶
Deriving KKT equations
\(\displaystyle - 2 \lambda x + 4 x= 0 \\- 2 \lambda y + 6 y= 0 \\x^{2} + y^{2} - 4= 0 \\\)
4. Step IV¶
Solving KKT Conditions to obtain necessary points
\(x\) | \(y\) | \(\lambda\) | Obj |
---|---|---|---|
\(-2\) | \(0\) | \(2\) | \(8\) |
\(2\) | \(0\) | \(2\) | \(8\) |
\(0\) | \(-2\) | \(3\) | \(12\) |
\(0\) | \(2\) | \(3\) | \(12\) |
5. Step V¶
Computing Bordered Hessian for each points
\(\displaystyle \bar{H} = \left[\begin{matrix}0 & 2 x & 2 y\\2 x & - 2 \lambda + 4 & 0\\2 y & 0 & - 2 \lambda + 6\end{matrix}\right]\)
6. Step VI¶
Determinant of the bordered hessian will provide maxima and minima.
\(x\) | \(y\) | \(\lambda\) | Obj | Bordered Hessian |
---|---|---|---|---|
\(-2\) | \(0\) | \(2\) | \(8\) | \(-32\) |
\(2\) | \(0\) | \(2\) | \(8\) | \(-32\) |
\(0\) | \(-2\) | \(3\) | \(12\) | \(32\) |
\(0\) | \(2\) | \(3\) | \(12\) | \(32\) |
Conclusion: First two points are minima while third and forth points are maxima.
Last modified on: 2023-01-06 22:22:45