Skip to content

Equality Constraints

KKT Conditions

Find the minimum (over \(x\), \(y\)) of the function \(f(x,y)\), subject to \(g(x,y)=0\), where

\[ \begin{alignat*}{2} & \text{minimize: } && 2 x^2 + 3 y^2 \\ & \text{subject to: } && \begin{aligned}[t] x^2 + y^2 &= 4 \end{aligned} \end{alignat*} \]

1. Step I

Defining variable and functions

$\displaystyle f = 2 x^{2} + 3 y^{2}\ g = x^{2} + y^{2} - 4 $

2. Step II

Defining lagrangian function.

The lagrangian \(L=- \lambda \left(x^{2} + y^{2} - 4\right) + 2 x^{2} + 3 y^{2}\)

3. Step III

Deriving KKT equations

\(\displaystyle - 2 \lambda x + 4 x= 0 \\- 2 \lambda y + 6 y= 0 \\x^{2} + y^{2} - 4= 0 \\\)

4. Step IV

Solving KKT Conditions to obtain necessary points

\(x\) \(y\) \(\lambda\) Obj
\(-2\) \(0\) \(2\) \(8\)
\(2\) \(0\) \(2\) \(8\)
\(0\) \(-2\) \(3\) \(12\)
\(0\) \(2\) \(3\) \(12\)

5. Step V

Computing Bordered Hessian for each points

\(\displaystyle \bar{H} = \left[\begin{matrix}0 & 2 x & 2 y\\2 x & - 2 \lambda + 4 & 0\\2 y & 0 & - 2 \lambda + 6\end{matrix}\right]\)

6. Step VI

Determinant of the bordered hessian will provide maxima and minima.

\(x\) \(y\) \(\lambda\) Obj Bordered
Hessian
\(-2\) \(0\) \(2\) \(8\) \(-32\)
\(2\) \(0\) \(2\) \(8\) \(-32\)
\(0\) \(-2\) \(3\) \(12\) \(32\)
\(0\) \(2\) \(3\) \(12\) \(32\)

Conclusion: First two points are minima while third and forth points are maxima.

Last modified on: 2023-01-06 22:22:45