UNIVERSITY DEPARTMENT OF MATHEMATICS
 Tilka Manjhi Bhagalpur University, Bhagalpur
 Assignment - I

Due Date: 28-09-19
PAPER - XV
Session: 2018-20

1. Solve the following problems using simplex method
(a) Solve the linear program

$$
\begin{aligned}
& \text { minimize: } x_{1}-2 x_{2}-4 x_{3}+2 x_{4} \\
& \text { subject to: } \\
& x_{1}-2 x_{3} \leq 4 \\
& x_{2}-x_{4} \leq 8 \\
& -2 x_{1}+x_{2}+8 x_{3}+x_{4} \leq 12 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

(b) Solve the linear program

$$
\begin{aligned}
& \text { minimize: } 2 x-y+2 z \\
& \text { subject to: } \quad 2 x+y \leq 10 \\
& x+2 y-2 z \leq 20 \\
& y+2 z \leq 5 \\
& x, y, z \geq 0
\end{aligned}
$$

Answer: Optimal is 15 at $(5,0,5 / 2)$.
(c) Solve the linear program

$$
\text { maximize: } \begin{aligned}
& x_{1}+2 x_{2}+2 x_{3} \\
& \text { subject to: } \\
& 5 x_{1}+2 x_{2}+3 x_{3} \leq 15 \\
& x_{1}+4 x_{2}+2 x_{3} \leq 12 \\
& 2 x_{1}+x_{3} \leq 8 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(d) Solve the linear program

$$
\begin{aligned}
& \operatorname{maximize}: 4 x_{1}+3 x_{2}+6 x_{3} \\
& \text { subject to: } \\
& 3 x_{1}+x_{2}+3 x_{3} \leq 30 \\
& 2 x_{1}+2 x_{2}+3 x 3 \leq 40 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

2. Solve the following problems using Big-M and Two-phase method
(a) Solve the linear program
(b) Solve the linear program

$$
\begin{aligned}
\operatorname{maximize}: & 3 x_{1}-x_{2} \\
\text { subject to: } & 2 x_{1}+x_{2} \\
x_{1}+3 x_{2} & \leq 2 \\
x_{2} & \leq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

$$
\text { maximize: } \begin{aligned}
2 x_{1}+3 x_{2}+4 x_{3} & \\
\text { subject to: } 3 x_{1}+2 x_{2}+x_{3} & \leq 10 \\
2 x_{1}+3 x_{2}+3 x_{3} & \leq 15 \\
x_{1}+x_{2}-x_{3} & \geq 4 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Answer: Optimal is $140 / 9$ at $(1 / 3,38 / 9,5 / 9)$.
3. Infeasibility problems
(a) Show that the following problem has no feasible (b) Consider the following problem, in the phase I, solution
maximize: $2 x+5 y$
subject to: $3 x+2 y \geq 12$

$$
\begin{array}{r}
2 x+y \leq 4 \\
x, y \geq 0
\end{array}
$$

the artificial variable didn't leave but assumes the value 0 , hence we can remove it and continue with phase II
maximize: $2 x_{1}+2 x_{2}+4 x_{3}$
subject to: $\quad 2 x_{1}+x_{2}+x_{3} \leq 2$

$$
\begin{array}{r}
3 x_{1}+4 x_{2}+2 x_{3} \geq 8 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

4. Consider the following linear programming problem

$$
\begin{aligned}
\text { maximize: } 3 x+2 y & \\
\text { subject to: } 4 x-y & \leq 4 \\
4 x+3 y & \leq 6 \\
4 x+y & \leq 4 \\
x, y & \geq 0
\end{aligned}
$$

(a) Show that the problem is degenerate but didn't cycle.
(b) Verify the result by solving the problem graphically.
5. Problems on alternative optima
(a) Show that the following problem has alternative (b) Identify three alternative optimal basic solution, optima, hence find all the solutions

$$
\begin{aligned}
& \text { maximize: } 2 x+4 y \\
& \text { subject to: } x+2 y \leq 5 \\
& x+y \leq 4 \\
& x, y \geq 0
\end{aligned}
$$ hence write the a general expression for the solutions of the following LPP.

$$
\begin{aligned}
\operatorname{maximize} & x_{1}+2 x_{2}+3 x_{3} \\
\text { subject to: } x_{1}+2 x_{2}+3 x_{3} & \leq 10 \\
x_{1}+x_{2} & \leq 5 \\
x_{1} & \leq 1 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

6. Problems on unbounded objective
(a) Show that the following problem has unbounded (b) Show that the following problem has unbounded objective objective

$$
\begin{aligned}
& \text { maximize: } 2 x+y \\
& \text { subject to: } x-y \leq 10 \\
& 2 y \leq 40 \\
& x, y \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{maximize}: & 20 x_{1}+5 x_{2}+x_{3} \\
\text { subject to: } 3 x_{1}+5 x_{2}-5 x_{3} & \leq 50 \\
x_{1}+3 x_{2}-4 x_{3} & \leq 20 \\
x_{1} & \leq 10 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

