UNIVERSITY DEPARTMENT OF MATHEMATICS
 Tilka Manjhi Bhagalpur University, Bhagalpur

1. Problems on Inner Product Space
(a) Show that the set of all square matrices of order n over \mathbb{R} forms an inner product space with the innner product is given by

$$
\langle A, B\rangle=\operatorname{trace} B^{T} A
$$

(b) Show that the set of all continuous function $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$, forms an inner product space with inner product given by

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

2. On the vector space over \mathbb{R}, consider three vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
0 \\
2 \\
-3
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]
$$

Suppose that \mathbf{v}_{4} is another vector which is orthogonal to \mathbf{v}_{1} and \mathbf{v}_{3}, and satisfying

$$
\mathbf{v}_{2} \cdot \mathbf{v}_{4}=-3
$$

i. $\mathbf{v}_{1} \cdot \mathbf{v}_{2}$ ii. $\mathbf{v}_{3} \cdot \mathbf{v}_{4}$
iii. $\left(2 \mathbf{v}_{1}+3 \mathbf{v}_{2}-\mathbf{v}_{3}\right) \cdot \mathbf{v}_{4}$
iv. $\left\|\mathbf{v}_{1}\right\|,\left\|\mathbf{v}_{2}\right\|,\left\|\mathbf{v}_{3}\right\|$
v. What is the distance between \mathbf{v}_{1} and \mathbf{v}_{2} ?
3. A set of nonzero orthogonal vectors forms a linearly independent set.
4. Show that the set of all bilinear forms over a vector space V over a field F, also forms a vector space over the same field F.
5. Problems on Gram Schmidt Orthogonalizaton
(a) Let W be the subspace of \mathbb{R}^{4} spanned by

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] .
$$

Construct an orthonormal basis of W.
(b) Let \mathcal{P}_{2} be the set of all polynomials of degree less than 3 over real numbers with the inner product given by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Starting with a basis $\left(1, x, x^{2}\right)$, find an orthonormal basis.
6. Problems on Matrix of Bilinear Form
(a) Let \mathcal{P}_{2} be the set of all polynomials of degree less than 3 over real numbers with the bilinear transformation given by

$$
H(f, g)=\int_{-1}^{1} f(x) g(x) d x
$$

Find the matrix of bilinear forms with respect to the following bases.
i. $\beta_{1}=\left(1, x, x^{2}\right)$
ii. $\beta_{2}=\left(1,1+x, 1+x^{2}\right)$

7. Problems on quadratic forms

(a) Write the following quadratic form in matrix form. Find it's rank and signature.
i. $K\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$
ii. $K\left(x_{1}, x_{2}\right)=5 x_{1}^{2}-10 x_{1} x_{2}+x_{2}^{2}$
iii. $K\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+4 x_{1} x_{2}-6 x_{1} x_{3}+8 x_{2} x_{3}$
(b) Reduce the quadratic form into the canonical form and decide the definiteness of a quadratic form
i. $-x^{2}-y^{2}-2 z^{2}+2 x y$
ii. $x^{2}-2 x y+x z+2 y z+2 z^{2}+3 z x$
iii. $-4 x^{2}-y^{2}+4 x z-2 z^{2}+2 y z$
iv. $-x^{2}-y^{2}+2 x z+4 y z+2 z^{2}$
v. $-x^{2}+2 x y-2 y^{2}+2 x z-5 z^{2}+2 y z$
vi. $y^{2}+x y+2 x z$

