UNIVERSITY DEPARTMENT OF MATHEMATICS Tilka Manjhi Bhagalpur University, Bhagalpur

PAPER – III

ASSIGNMENT – II

Linear Algebra

- 1. Problems on invariant subspace
 - (a) For each of the following linear operator *T* on *V* and subspace *W*, determine if the given subspace is invariant or not

i.
$$V = \mathcal{P}_3$$
, $T(f)(x) = f'(x)$ and $W = \mathcal{P}_2(x)$

- ii. $V = \mathbb{R}^3$, T(a, b, c) = (a + b + c, a + b + c, a + b + c) and $W = \{(t, t, t) : t \in \mathbb{R}\}$ iii. $V = M_{2 \times 2}(\mathbb{R})$, $T(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} A$ and $W = \{A \in V : A^T = A\}$
- (b) Let *T* be any linear transformation from *V* to *V*, then show that the following spaces are invariant under *T*
 - i. {0} and *V*
 - ii. Nullspace of *T* and Range of *T*
 - iii. Space generated by any non-empty set of eigenvectors of *T*
 - iv. Generalized eigenspace E_{λ} , for some eigenvalue λ
- 2. Problem on Jordan Canonical Forms
 - (a) Find the characteristic polynomial, minimal polynomial, and the Jordan canonical form of the following matrices

i. $\begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$	ii. $\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$
iii. $ \begin{pmatrix} 11 & -4 & -5 \\ 21 & -8 & -11 \\ 3 & -1 & 0 \end{pmatrix} $	iv. $ \begin{pmatrix} 4 & 1 & 0 \\ -1 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix} $
$\mathbf{v}. \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{pmatrix}.$	vi. $\begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 1 & -1 & 3 \end{pmatrix}$

(b) Let $A = \begin{pmatrix} 5 & -1 \\ 9 & -1 \end{pmatrix}$. Then find the formula for A^n , where *n* is a positive integer.