UNIVERSITY DEPARTMENT OF MATHEMATICS
 Tilka Manjhi Bhagalpur University, Bhagalpur

1. Problems on invariant subspace
(a) For each of the following linear operator T on V and subspace W, determine if the given subspace is invariant or not
i. $V=\mathcal{P}_{3}, T(f)(x)=f^{\prime}(x)$ and $W=\mathcal{P}_{2}(x)$
ii. $V=\mathbb{R}^{3}, T(a, b, c)=(a+b+c, a+b+c, a+b+c)$ and $W=\{(t, t, t): t \in \mathbb{R}\}$
iii. $V=M_{2 \times 2}(\mathbb{R}), T(A)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) A$ and $W=\left\{A \in V: A^{T}=A\right\}$
(b) Let T be any linear transformation from V to V, then show that the following spaces are invariant under T
i. $\{0\}$ and V
ii. Nullspace of T and Range of T
iii. Space generated by any non-empty set of eigenvectors of T
iv. Generalized eigenspace E_{λ}, for some eigenvalue λ
2. Problem on Jordan Canonical Forms
(a) Find the characteristic polynomial, minimal polynomial, and the Jordan canonical form of the following matrices
i. $\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$
ii. $\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right)$
iii. $\left(\begin{array}{ccc}11 & -4 & -5 \\ 21 & -8 & -11 \\ 3 & -1 & 0\end{array}\right)$
iv. $\left(\begin{array}{ccc}4 & 1 & 0 \\ -1 & 2 & 0 \\ 1 & 1 & 3\end{array}\right)$
v. $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 2\end{array}\right)$.
vi. $\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 1 & -1 & 3\end{array}\right)$
(b) Let $A=\left(\begin{array}{ll}5 & -1 \\ 9 & -1\end{array}\right)$. Then find the formula for A^{n}, where n is a positive integer.
