UNIVERSITY DEPARTMENT OF MATHEMATICS Tilka Manjhi Bhagalpur University, Bhagalpur

Class Test Examination – 2018

Time: $1\frac{1}{2}$ hour	PAPER – III	Session: 2018–20
1. Choose the most appropriate opti	ion.	
(a) Let A be a real square matri following statement is true.	x of order n over with all it's eigenval	ues belong to \mathbb{R} . Then which of the
A. A is diagonalizable. B. A is symmetric.	C. A has D. None	s orthogonal eigenvecotrs. of these
(b) Let A be a square matrix with	th real entries, then which of the follo	wing is not true
A. A is dianolizable ov B. A is triangulizable	$\operatorname{ver} \mathbb{C}$ C. A is t $\operatorname{over} \mathbb{C}$ D. None	riangulizable over ${\mathbb R}$ of these
 (c) Let x₁ and x₂ be the solution the linear combination ax₁ + A. any real value of a B. for infinitely many C. for unique value of D. None of these (d) A system of linear equation of the se 	of a system of linear equation $Ax = b$ βx_2 will be a solution of $Ax = 0$ for and β value of α and β α and β with <i>m</i> equations and <i>n</i> variables has	, and $lpha$ and eta be any number, then s unique solution if
A. rank $A = \operatorname{rank} \tilde{A}$ B. rank $A \neq \operatorname{rank} \tilde{A}$	C. rank. D. None	$A = \operatorname{rank} \tilde{A} = m$ of these
 (e) Let T: V → V be a linear operative invariant subspace A. Eigenspace corresponders B. Generalized eigens C. Range space of T, i. D. None of these 	erator with eigenvalue λ , then which onding to λ pace corresponding to λ .e., $T(V)$	of the following subspace is not an
2. Answer any two of the following		
(a) Solve the following system of type of system of linear equations:	of linear equation using Gaussian eli- tions using solutions	mination method and describe the
	x + 2y + 3z = 1	

- (b) Define the following terms with examples
 - i. Generalized eigenvector
 - ii. Matrix of linear transformation
- (c) Find the characteristic polynomial, minimal polynomial, and Jordan canonical form of the following matrix

(4	1	0)
-1	2	0
(1	1	3)

-3x - 2y - z = 24x + 4y + 4z = 3