UNIVERSITY DEPARTMENT OF MATHEMATICS Tilka Manjhi Bhagalpur University, Bhagalpur

PAPER – VI

i

ASSIGNMENT – III

Complex Analysis

- 1. Problems on singulariy of complex functions
 - (a) Find the singularity and it's type of the following functions

i.
$$f(z) = \frac{z^2}{1 - \cos z}$$

ii. $f(z) = \frac{z^2}{\sin(z)}$
iii. $f(z) = \frac{1}{e^z - 1}$
iv. $f(z) = \frac{\sin z^2}{z^2(z - 2)}$
v. $f(z) = \sin\left(\frac{1}{z}\right)$
vi. $f(z) = \frac{1}{1 - \cos^2 z}$

- (b) Show that the singularity of $\sin\left(\frac{1}{z}\right)$ and $e^{1/z}$ is isolated and essential.
- (c) Show that the singularity of $f(z) = \frac{1}{1 \cos(\frac{1}{z})}$ and $f(z) = \frac{1}{e^{\frac{1}{z}} 1}$ at z = 0 is non-isolated and essential.
- 2. Find the radius convergence of following power series

i.
$$\sum \frac{n!}{n^n} z^n$$

ii. $\sum n^n z^n$
iii. $\sum \frac{(n!)^3}{3n!} z^n$
iv. $\sum (\log n)^2 z^n$
v. $\sum [2 + (-1)^n]^n z^n$
vi. $\sum z^{n!}$

3. Question on Taylor and Laurent series

(a) Find the Maclaurin series expansion of the function

i.
$$f(z) = \frac{z}{z^4 + 9}$$
 ii. $f(z) = z^2 e^{3z}$ iii. $f(z) = \sin z^2$

(b) Find Taylor's series expansion of $\frac{1}{1-z}$ around the point *i*.

- (c) Find the Laurent series for the function $\frac{z}{(z+1)(z-2)}$ in each of the following domains.
 - i. |z| < 1 ii. 1 < |z| < 2 iii. |z| > 2
- (d) Find the Laurent series expansion of $\frac{(z+1)}{z(z-4)^3}$ in the domain 0 < |z-4| < 4.

(e) Find the Laurent series for the function
$$z^2 \cos\left(\frac{1}{3z}\right)$$
 in the domain $|z| > 0$.

4. Find the zeros and poles of the following functions with their order

i.
$$f(z) = \tan z$$

ii. $f(z) = \frac{1}{z(e^z - 1)}$
iii. $f(z) = \frac{z + 3}{z^2(z^2 + 4)}$
iv. $f(z) = \frac{z - 1 - i}{z^2 - (4 + 3i)z + (1 + 5i)}$

5. Problem of Argument Principle

(a) Solve the integration $\oint_{|z|=1} \frac{f'}{f} dz$, where *f* is the following

iii. $f(z) = \frac{(2z-1)^7}{z^3}$

i.
$$f(z) = z^2$$

(b) Solve the integration $\oint_{|z|=10} f(z)dz$, where *f* is the following

i.
$$f(z) = \cot z$$
 ii. $f(z) = \frac{e^z}{1 + e^z}$ iii. $f(z) = \frac{\sin z}{1 - \cos z}$

ii. $f(z) = \frac{z^3 + 2}{z}$

- 6. Problems on Rouches Theorem
 - (a) Determine the roots of $z^7 4z^3 + z 1 = 0$ inside the circle |z| = 1.
 - (b) Determine the number of zeros, counting multiplicities, of the polynomial $z^4 2z^3 + 9z^2 + z 1 = 0$ inside the circle |z| = 2.
 - (c) If a > e, then show that the equation $az^n = e^z$ has *n* roots inside |z| = 1.
- 7. Problems on Residue Calculus
 - (a) Find the residue at z = 0 of the function

i.
$$\frac{1}{z+z^2}$$

ii. $z\cos\left(\frac{1}{z}\right)$
iii. $\frac{z-\sin z}{z}$
iv. $\frac{\cot z}{z^4}$

(b) Use Cauchy's residue theorem to evaluate the integral of each of these functions around the circle |z| = 3 in the positive sense

i.
$$\frac{e^{-z}}{z^2}$$

ii. $\frac{e^{-z}}{(z-1)^2}$
iii. $z^2 \exp\left(\frac{1}{z}\right)$
iv. $\frac{z+1}{z^2-2z}$

- 8. Problems on Bilinear Transformation
 - (a) Find the biliner transformation that maps the points z_1, z_2 and z_3 to w_1, w_2 and w_3 respectively as follows
 - i. $z_1 = -1, z_2 = 0, z_3 = 1$ to $w_1 = -i, w_2 = 1, w_3 = i$.
 - ii. $z_1 = 1, z_2 = 0, z_3 = -1$ to $w_1 = i, w_2 = \infty, w_3 = 1$.
 - (b) Find the bilinear transformation that maps distinct points z_1, z_2, z_3 onto the points $w_1 = 0, w_2 = 1, w_3 = \infty$.
 - (c) Find a bilinear map that transform the unit disk |z| < 1 onto the right half-plane, *i.e.*, Re w > 0.
 - (d) Find a bilinear map that transform the unit disk |z| < 1 onto the upper half-plane, *i.e.*, Im w > 0.