UNIVERSITY DEPARTMENT OF MATHEMATICS Tilka Manjhi Bhagalpur University, Bhagalpur

PAPER – VI

ASSIGNMENT – II

Complex Analysis

- 1. Problems on Cauchy Integral Formula
 - (a) Evaluate the following integral along the positively oriented circle γ : |z| = 2

i.
$$\oint_{\gamma} \frac{z^3 + 5}{z - i} dz$$
 ii.
$$\oint_{\gamma} \frac{1}{z^2 + z + 1} dz$$
 iii.
$$\oint_{\gamma} \frac{\sin z}{z^2 + 1} dz$$

(b) Evaluate the following integral in the given contours

i.
$$\oint_{|z-4|=5} \frac{\cos z}{z} dz$$
ii.
$$\oint_{|z-i|=1} \frac{z^2}{z^2 + 1} dz$$
iii.
$$\oint_{|z|=2} \frac{e^{i\pi z/2}}{z^2 - 1} dz$$
iv.
$$\oint_{|z|=1} e^z z^{-3} dz$$
v.
$$\oint_{|z-1|=\frac{5}{2}} \frac{1}{(z-4)(z+1)^4} dz$$
vi.
$$\oint_{|z|=2} \frac{\sin z}{(z^2 - 1)^2} dz$$

- 2. Problems on Cauchy's Inequality
 - (a) Let *f* be an entire function such that $|f(z)| \le M|z|, \forall z \in \mathbb{C}$, where *M* is a fixed positive constant. Show that $f(z) = \alpha z$, where α is a complex constant.
 - (b) Let *f* be an entire function and *M* be a constant such that

 $|f(z)| \le M |z|^{\frac{5}{4}}$

for all $z \in \mathbb{C}$. Show that we can find a constant $\alpha \in \mathbb{C}$ such that $f(z) = \alpha z^{\frac{5}{4}}$ for all $z \in \mathbb{C}$.

- 3. Using the maximum modulus theorem in complex analysis, find the maximum of |f(z)| on $|z| \le 1$, when $f(z) = z^2 3z + 2$.
- 4. Suppose *f* is analytic on the open disc |z| < 1 and satisfies |f(z)| < M if |z| < 1. Suppose that f(a) = 0 for some a, |a| < 1. Then, show that

$$|f(z)| \le M \cdot \left| \frac{z-a}{1-\overline{a}z} \right|,$$

where \overline{a} is the complex conjugate of *a*.

Hint: Define

$$g(z) = \frac{f}{M} \circ \phi_a^{-1}(z)$$
, where $\phi_a(z) = \frac{z-a}{1-\overline{a}z}$,

then $g: D \rightarrow D$, such that, g(0) = 0. Now apply the Schwartz Lemma.